

FIG. 1. Plot of E(k) for aluminum at different densities; a) $\delta = 1.48$, b) $\delta = 2.95$, c) $\delta = 4.18$.

35

FIG. 2. Energy bands in K at different degrees of compression: a) $\delta = 1$, b) $\delta = 3$, c) $\delta = 5$, d) $\delta = 10$.

with aluminum. The configuration in the aluminum atom is $1s^22s^22p^63s^23p$, and the 3d level lies 0.148 at. un. above the 3p level.¹⁾ In the aluminum metal, however, the last electron is at 3d and not

3p. To be sure, the sub-band 3d₀, at which the last electron is located, is directed downward, i.e., the energy E decreases with k, and in the case of large k the wave function of the electron contains a large admixture of p-states. Figures 1a-c show E(k) curves for aluminum at δ equal to 1.48, 2.95, and 4 band great surfa num. FI 8 equ (Fig. elect respé 4s an great electi in Sei Su filled lower banda many Th but ni must is not and 1 and th $\rho = 3i$ is 0.0 At p is 0.1 2. DI DI It two p unitcorre tweet of the late 1 free-